Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

bonjour c'est la suite du devoir 117532

Je bloque a cette partie aussi :/
Pouvez vous m'aidez svp?

 

Partie C
On considère l'orthocentre H de ABC et le point K tel que: vectOK=VectOA+VectOB+VectOC

8) Montrer que : Vect OB +VECTOC=2vectOA' puis que vectAK=2OA'
9)En deduire que (AK) et (BC) sont perpendiculaires,puis que (BK) et (AC) sont aussi perpendiculaires
10)En deduire que K et H sont confondus, puis que H vérifie: vectOH=VectOA+VectOB+VectOC
11)Compléter la figure

Partie D
12) Que peut-on conclure quant à la position de O,H et G?

 


Merci a vous :)



Sagot :

N.B. : sauf indication contraire, comprendre AB comme le vecteur AB.

 

Partie C :
--------------

 

8)   OB + OC = OA' + A'B + OA' + A'C
                  = 2 OA' - A'C + A'C
                  = 2 OA'


      AK = OK - OA = OA + OB + OC - OA
                            = OB + OC

                            = 2 OA'


9)   Comme (OA') est la médiatrice du segment [BC], elle lui est nécessairement perpendiculaire.

 

      Et comme nous venons de démontrer que AK est collinéaire à OA', (AK) est donc aussi perpendiculaire à (BC)

      Par le même raisonnement, on prouve que (BK) est perpendiculaire à (AC)


10)  Comme (AK) est la perpendiculaire à (BC) passant par A et (BK) la perpendiculaire à (AC) passant par B, (AK) et (BK) sont deux droites confondues avec les hauteurs du triangle ABC.

 

      Or deux hauteurs d'un triangle se coupent à l'orthocentre de ce triangle.

     K est donc confondu avec H l'orthocentre du triangle ABC.

 

      Et comme : OK = OA + OB + OC

      et que K et H sont confondus, on a aussi : OH = OA + OB + OC


11)  Continuer la figure.

 


Partie D :
----------

12)   Comme on a : 3 OG = OA + OB + OC

         et que OH = OA + OB + OC

         les vecteurs OG et OH sont collinéaires.

 

        Ces deux vecteurs ayant de plus le point O en commun, sont sur la même droite.

        Donc O, H et G sont alignés dans cet ordre.

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.