Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour quelqu'un peut il m'expliquer comment on calcule les racine carrée c'est pour mon brevet de demain merci d'avance



Sagot :

3√32-2√50+√98

=3√(16*2)-2√(25*2)+√(49*2)

=12√2-2*5√2+7√2

=9√2

La racine carrée d'un nombre positif a, notée √a, est le nombre positif qui mis au carré donnera ce nombre a.

 

      Ainsi :         √4 = 2      parce que    2² = 4

                        √1 = 1      parce que    1² = 1

 

 

   N.B. :   Dans la notation √a, √ est appelé le radical et a le radicante.

 

 

→ La racine carré d'un nombre négatif n'existe pas dans l'ordre des réels car un carré est toujours positif :     par exemple            (-4)² = 16      et non pas -16 !

                             et donc       √(-4)² = √(16) = 4       mais    √(-4) n'existe pas.

 

 

 

 

Après, il existe quelques règles pour le calcul avec les racines carrées :

 

          √a × √b  =  √(a × b)

          √a : √b  =  √(a : b)

 

 /!\   Par contre on ne pourra pas faire :    √a + √b = √(a + b)    car c'est généralement faux,

                                                       ni   √a + √b = √(a + b)            pour la même raison.

 

 

 

 

 

il faut aussi penser à factoriser les racines carrées de même valeur. Par exemple :

 

         a√n  +  b√n   =   (a + b) √n

 

 

 

=============

 

Normalement, si l'on a compris ceci, on possède ce qu'il faut pour aborder sereinement le brevet en ce qui concerne les racines carrées.

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.