Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour quelqu'un peut il m'expliquer comment on calcule les racine carrée c'est pour mon brevet de demain merci d'avance



Sagot :

3√32-2√50+√98

=3√(16*2)-2√(25*2)+√(49*2)

=12√2-2*5√2+7√2

=9√2

La racine carrée d'un nombre positif a, notée √a, est le nombre positif qui mis au carré donnera ce nombre a.

 

      Ainsi :         √4 = 2      parce que    2² = 4

                        √1 = 1      parce que    1² = 1

 

 

   N.B. :   Dans la notation √a, √ est appelé le radical et a le radicante.

 

 

→ La racine carré d'un nombre négatif n'existe pas dans l'ordre des réels car un carré est toujours positif :     par exemple            (-4)² = 16      et non pas -16 !

                             et donc       √(-4)² = √(16) = 4       mais    √(-4) n'existe pas.

 

 

 

 

Après, il existe quelques règles pour le calcul avec les racines carrées :

 

          √a × √b  =  √(a × b)

          √a : √b  =  √(a : b)

 

 /!\   Par contre on ne pourra pas faire :    √a + √b = √(a + b)    car c'est généralement faux,

                                                       ni   √a + √b = √(a + b)            pour la même raison.

 

 

 

 

 

il faut aussi penser à factoriser les racines carrées de même valeur. Par exemple :

 

         a√n  +  b√n   =   (a + b) √n

 

 

 

=============

 

Normalement, si l'on a compris ceci, on possède ce qu'il faut pour aborder sereinement le brevet en ce qui concerne les racines carrées.

Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.