Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.
Sagot :
1) On a : 2x + 4 < 0 ⇔ 2x < -4 ⇔ x < -2
et 3 - x < 0 ⇔ -x < -3 ⇔ x > 3
Or, pour qu'un produit de deux facteurs soit négatif, il faut que seulement l'un des deux soit négatif, ce qui donne le tableau suivant :
| x || x < -2 | x = -2 | -2 < x < 3 | x = 3 | x > 3 |
| 2x + 4 || - | 0 | + | + | + |
| 3 - x || + | + | + | 0 | - |
| (2x + 4) (3 - x) || - | 0 | + | 0 | - |
2) a) Il suffit de représenter les trois fonctions dans un repère orthonormé
b) Il faut commenter ce que l'on voit : commenter le signe de f(x) [en bleu], en fonction de celui de g(x) [en rouge] et h(x) [en vert] : quand les deux dernières sont de même signe (ici positif), f(x) est positif, quand elles sont de signe opposé, f(x) est négatif.
1) Tableau de signes de f(x)=(2x+4)(3-x)
règle du binôme :
* ax+b=0 pour x=-b/a
* le signe de ax+b est : - 0 + si a>0
* le signe de ax+b est : + 0 - si a<0
donc :
* pour 2x-4, on obtient : - 0 +
la valeur 0 est obtenur en x=2
* pour 3-x, on obtient + 0 -
la valeur 0 est obtenue pour x=3
on réuni les 2 signes dans un même tableau donc :
x - inf 2 3 +inf
2x-4 - 0 + +
3-x + + 0 -
f(x) - 0 + -
2) on représente les 2 fonctions affines :
g(x)=2x-4 et h(x)=3-x
on observe que Cg "monte" et que Ch "descend"
donc le signe de g est - 0 +
et le signe de h est + 0 -
f(x)=(2x-4)(3-x)
on observe que Cf est une parabole "en forme de N"
donc le signe de f est - 0 + 0 -
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.