Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Voir photo ci joint l exercice 4 : algorithme.

Voir Photo Ci Joint L Exercice 4 Algorithme class=

Sagot :

1)    La boucle Tant que se termine quand k = 1,

       puisque l'instruction est de continuer tant que k1.

 

 

 

 

2)        |   n   |     2     |     3     |     4     |     5     |     6     |     7     |     8     |     9     |

           |   P  |     1     |     3     |     6     |    10    |     15    |    21    |    28    |    36     |

 

 

 

 

 

3)

   a.   L'algorithme précédent permet de répondre au problème posé parce que comme tous les élèves ne serrent la main qu'une fois et une seule, sans se serrer la main à eux-même :

 - le premier élève serrera la main tous les autres sauf lui, soit à (- 1) personnes,

 - le deuxième, ayant déjà serré la main au premier et ne se la serrant pas à lui-même fera donc en plus (n - 2) poignées de mains,

 - et ainsi de suite jusqu'à l'avant-dernier élève qui ne fera en plus une poignée de main qu'à (n - (n - 1)) personnes puisqu'il ne serrera la main qu'au dernier élève à qui tout le monde ayant déjà serré la main et qui ne se la serrant pas à lui-même ne fera pas de poignée de main supplémentaire.

 

Ce qui fait qu'il y aura :

 

               (n - 1) + (n - 2) + … + [n - (n - 1)] poignées de mains, comme le calcule l'algorithme

 

   

   b.   Le nombre de poignées de mains échangées entre les 35 élèves de la classe est de 595.

 

 

   c.   Le nombre de poignées de mains échangées entre les 245 élèves de première scientifique du lycée est de 29890.

 

 

 

 

4)  Comme : 

 

       (n - 1) + (n - 2) + … + [n - (n - 1)] + [n - (n - 1)]   =   (n - 1) + (n - 2) … + 2 + 1

 

                                                                             =   [tex]\sum_{k=1}^{n-1} k = \frac{n (n - 1)}{2}[/tex]

 

puisque c'est la somme des premiers entiers jusqu'à (n - 1).

 

Le nombre de poignées de mains échangées, en fonction de n (nombre entier strictement positif) est de :

                                              [tex]\frac{n (n - 1)}{2}[/tex]

 

 

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.