Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

bjr,
serait il possible d'avoir de l'aide pour la resolution de ce devoir de stat, svp.
cordialement,


Bjr Serait Il Possible Davoir De Laide Pour La Resolution De Ce Devoir De Stat Svp Cordialement class=

Sagot :

Ex 14:

1) Le graphique est donné en annexe

 

2) Ajustement affine par la Méthode des Moindres Carrés :

Point moyen :

xG=1/n*∑xi

     =75

yG=1/n*∑yi

     =30

 

Droite des moindres carrés :

y=ax+b

 

cov(x,y)=1/n*∑xi*yi-xG*yG

             =1/8*21020-75*30

             =377,5

 

var(x)=1/n*∑xi²-(xG)²

         =1/8*49200-75²

         =525

 

a=cov(x,y)/var(x)

   =377,5/525

   =0,719

 

b=yG-a*xG

   =30-0,719*75

   =-23,7

 

donc on obtient : y=0,719x-23,7

 

3) Estimation de la distance de freinage à 120 km/h

d=0,719*120-23,7

d=62,58 m

 

Ex 15 :

1) Le graphique est donné en annexe

 

2) Ajustement affine par la Méthode des Moindres Carrés :

xG=10,566

yG=6,333

∑xi*yi=612,7

∑xi²=1019,34

 

donc on obtient y=0,6043x-0,0526

 

3) le coefficient de corrélation linéaire est :

r=cov(x,y)/√(var(x)*var(y))

 

cov(x,y)=1/6*612,7-10,566*6,333

             =35,2

 

√(var(x)*var(y))=7,631*4,714

                          =35,97

 

r=35,2/35,97

r=0,978

 

Ex 16:

1) Le graphique est donné en annexe

 

2) Ajustement affine par la Méthode des Moindres Carrés :

xG=42,8

yG=12,8

∑xi*yi=5747

∑xi²=19694

 

donc on obtient y=0,195x+4,443