Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.
Sagot :
une pyramide régulière de sommet S a pour base le carré. ABCD telle que son volume est égal a 108 cm3. Sa hauteur [SH] mesure 9cm.
1) vérifier que l'aire de ABCD est bien 36cm².
volume(SABCD)=aire(ABCD)*hauteur/3
donc aire(ABCD)=108*3/9=36 cm²
2) En déduire la valeur exacte de AB.
AB²=27 donc AB=√36 donc AB=6 cm
b) Montrer que le périmètre du triangle ABC eqt egal a 12+6√2 cm.
p=AB+BC+AC
p=2*AB+AC
or AC²=AB²+BC²
donc AC²=2*36=72
donc AC=√72=6√2 cm
alors p=2*6+6√2
donc p=12+6√2 cm
SMNOP eqt une réduction de la pyramide SABCD.
on obtient alors la pyramide SMNOP telle que l'aire du carré. MNOP soit égal a 4cm².
2) a- calculer le volume de la pyramide SMNOP .
le coefficient de réduction est : k tel que k²=4/36=1/9
donc k=√(1/9)
donc k=1/3
donc le volume de la pyramide est :
V=k³*108=(1/3)^3*108=108/27=4 cm³
b- elise pense que pour obtenir le périmètre du triangle MNO il suffit de diviser le périmètre du triangle ABC par 3. Eteqs vous d'accord avec elle?
oui, car k=1/3
donc p(MNO)=1/3*(12+6√2)=4+2√2 cm
Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.