Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

Résoudre le système a la main, puis vérifier a la calculatrice. A) x - 3 = -17

2x + 4y = 6 B) 2a + 3b = -2    4a + b = 6

Sagot :

Bonsoir

 

x - 3y = -17

2x +4 y = 6

 

-2x -6y = 34

2x +4y = 6

 

-2y = 28

y = -14

 

x -(3x-14) = -17

x + 42 = -17

x = -17-42

 

x = -59

 

Vérification

x -3y = -17

-59 +42 = -17

-17 = -17

 

B

2a +3 b = -2

4a +b = 6

 

-4a -6b = 4

4a +b = 6

-5b = 10

b = -10/5 = -2

 

2a +3b = -2

2a -6 = -2

2a = -2+6

2a = 4

a = 2

 

verification

2a +3b = -2

4-6 = -2

-2 = -2

 

A) -3=-17

    2+4y=6

 

   1) =-17+3

       2+4y=6

 

       =-14

       2+4y=6    

 

   2) =-14

       2 x (-14)+4y=6

 

   3) =-14

       -28+4y=6

 

       =-14

       4y=6+28

 

       =-14

       4y=34

 

       =-14

       y= [tex]\frac{34}{4}[/tex]

 

       =-14

       y=8,5

 

   4) Le couple (-14;8,5) est solution de ce système.

 

Explication:

1) Il faut exprimer dans l'une des deux équations un inconnu en fonction de l'autre (ici  en fonction de y).

2) Il faut remplacer dans l'autre équation l'inconnu (ici ).

3) Il faut ensuite résoudre cette équation.

4) Et pour finir, il faut conclure.

 

 

B) 2a+3b=-2

     4a+b=6

 

    1) 2a+3b=-2

         b=6-4a

 

    2) 2a+3(6-4a)=-2

        b=6-4a

 

    3) 2a+18-12a=-2

        b=6-4a

 

    4) -10a+18=-2

        b=6-4a

 

        -10a=-2-18

        b=6-4a

 

        -10a=-20

        b=6-4a

 

        a= [tex]\frac{-20}{-10}[/tex]

        b=6-4a

 

        a=2

        b=6-4a

 

    5) a=2

        b=6-4x2

 

        a=2

        b=6-8

 

        a=2

        b=-2

 

    6) Le couple (2;-2) est solution de ce système.

 

Explication:

1) Il faut exprimer dans l'une des deux équations un inconnu en fonction de l'autre (ici b en fonction de a).

2) Il faut remplacer dans l'autre équation l'inconnu (ici b).

3) Il faut réduire l'équation qui a un seul inconnu (ici la première équation).

4) Il faut ensuite résoudre l'équation.

5) Il faut remplacer, dans l'autre équation, l'inconnu par sa valeur.

6)Et pour finir, il faut conclure.

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.