Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

a et b designent deux nombres tels que a > 3 et b > 7. L'unité de longueur est le metre. on considere un rectangle bleu de largeur a et de longueur b.

 

1) on augmente la largeur du rectangle bleu de 4m et on diminue sa longueur de 7m l'aire du rectangle reste la même écrire une égalité (E1) qui traduit cette affirmation 

2)on diminue la largeur du rectangle bleu de 3m et on augmente la longueur de 9m la encore l'aire reste la même écrire une égalité (E2) qui traduit cette affirmation

 

3)Resoude le systeme formé par les deux equations (E1) et (E2).

 

4) En deduire les dimensions et l'aire du rectangle bleu.



Sagot :

Aeneas

1) L'aire du rectanle est égale au produit de la largeur et de la longueur.

Soit A l'aire du rectangle, on a alors A = ab

On traduit l'affirmation en : A = (a+4)(b-7) = ab (E1)

 

2) de la même façon, on a : (a-3)(b+9) = ab (E2)

 

3) En développant E1, on obtient : 4b-7a = 28 (E1)

   En développant E2, on obtient : -3b+9a = 27 (E2)

 

En additionnant E1 et E2, on obtient : 

b+2a = 55

donc b = 55-2a

On remplace dans E1, on a :

220-15a = 28

15a = 192

a = 192/15 = 64/5

b = 55-(128/5) = (275-128)/5 = 147/5

 

4) le rectangle bleu a donc pour largeur 64/5 m, et pour longueur 147/5 m.

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.