Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Je suis en 1ère ST2S, le chapitre sur les dérivés et les tangente est incompréhensible. J'ai donc besoin d'aide pour un exercice. Un skieur descend une piste. On choisit comme point de départ (t=0 et d=0) le moment où le skieur passe une porte.Sa vitesse est alors de 2m/s. La distance d qu'il parcourt en mètre est une fonction du temps t en seconde, définie par la formule: d(t)= 0.5t²+2t

 

1. Calculer (d(10)-d(0)) /10 et interpréter ce résultat en terme de vitesse

2.On donne ci-dessous la représentation graphique de cette fonction sur l'intervalle [0;10], ainsi que la tangente à la courbe au point d'abscisse 10.

- déterminer d'(10). Interpréter ce résultat en terme de vitesse.

 

Pour la question 1 j'ai fais :

d(10)= 70 donc 70/10= 7 mais je comprend pas comment interpréter la chose. 

Pour la question 2 :

Je ne comprend rien !

 

svp aidez moi :)

 



Sagot :

1)  (d(10) - d(0)) /10 = (70 - 0)/10 = 7

 

2) l'equation de la tangente à la curbe au point d'abscisse 10 est y = d'(10)(x - 10) + d(10)

                                           y = 12x - 50

                                              = 12(x - 10) + 70

                                              = d'(10)(x - 10) + d(10)

           alors d'(10) = 12 (on la trouve à l'aide de la representation graphique de la fonction d)

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.