Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
Vérifiez que f est un polynôme du second degrés . Et le prof nous a aidé en notan au tableau =>
f(x) = ax au carré + bx + c
largeur =x
Longueur =4-x
Aire = L*l x ( 4 - x ) => développer => sa fait (4x - x au carré )
réponse:
soit f(x) l'aire du rectangle AMPN
f(x)=AM x AN
=x*(4-x)
=-x²+4x
or on a f(x)=-(x²-4x)
=-(x²-4x+4)+4
=-(x-2)²+4
de plus (x-2)² ≥ 0
donc-(x-2)² ≤ 0
donc f(x) ≤ 4 pour tout x ∈ [0;4]
ainsi f admet un maximum en x=2
ce maximum vaut f(2)=4
conclusion:
l'aire du rectangle AMPN est maximale si M se situe au milieu de [AB]
Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.