Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.
Sagot :
Vérifiez que f est un polynôme du second degrés . Et le prof nous a aidé en notan au tableau =>
f(x) = ax au carré + bx + c
largeur =x
Longueur =4-x
Aire = L*l x ( 4 - x ) => développer => sa fait (4x - x au carré )
réponse:
soit f(x) l'aire du rectangle AMPN
f(x)=AM x AN
=x*(4-x)
=-x²+4x
or on a f(x)=-(x²-4x)
=-(x²-4x+4)+4
=-(x-2)²+4
de plus (x-2)² ≥ 0
donc-(x-2)² ≤ 0
donc f(x) ≤ 4 pour tout x ∈ [0;4]
ainsi f admet un maximum en x=2
ce maximum vaut f(2)=4
conclusion:
l'aire du rectangle AMPN est maximale si M se situe au milieu de [AB]
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.