Answered

Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Le devoir porte sur les dérivées...

 

L'énoncé est le suivant: "un ballotin a une base rectangulaire de largeur 6 cm et de longueur x cm. Il se ferme par quatre rabats formant des rectangles de même dimensions que le rectangle du fond. 

Quelle longueur choisir pour confectionner un ballotin de 960 cm ³ en utilisant le minimum de carton?"

 

J'ai répondu aux première questions, trouvé que l'aire totale de la boite est A(x)=30x+320+(1920/x). Puis on doit calculer la dérivé, et c'est là que ça se complique... Mon résultat me semble étrange: 30-(1/x²), on doit ensuite étudier le signe de cette fonction A' et en déduire les variations de A sur ]0;+ [tex]\infty[/tex] [ et dresser le tableau de variation de l'aire...

 

Je ne vois pas trop comment dresser le tableau de variation d'une fonction 1/x .. Aidez moi s'il vous plait!

Sagot :

La dérivée de A(x)=30x+320+(1920/x) n'est pas 30-(1/x²) mais :

A ' (x) = 30 - 1920/x²

Signe de A ' :

30 - 1920/x² > 0 <=> 30  > 1920/x² <=> 30/1920 > 1/x² <=> x² > 1920/30 <=> x² > 64 

<=> x > 8  car x est une longueur donc strictement positive

Donc la fonction est décroissante pour x entre 0 et  8 (avec valeur interdite en 0) puis est croissante de 8 à +infini.

En espérant t'avoir aidé.

@+