Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Voilà j'ai un DM de maths mais je bloque sur un exercice ... L'énoncé est le suivant: "n est un entier supérieur ou égal à 4. Dans une urne, on place n jetons : un rouge et tous les autres blancs. On tire successivement, au hasard et avec remise, deux jetons de l'urne. On gagne 16 points si on tire deux fois le jeton rouge, 1 point si on tire deux fois un jeton blanc et on perd 5 points dans les autres cas. X est la variable aléatoire égale au gain algébrique du joueur : X prend 16; 1 et -5"

a)  Représenter cette expérience aléatoire à l'aide d'un arbre pondéré.

J'ai réussi facilement

 b) Déterminer la loi de probabilité de la variable aléatoire X.

Ici j'ai trouvé pour 16 on a (1/n)^2

  1 on a (n-1/n)^2

 5 on a ((1/n)*(n-1/n))+((1/n)*(n-1/n))

c) Exprimer en fonction de n l’espérance de X.

 d) Existe-t-il des valeur de n pour lesquelles le jeu est équitable ?

 Je bloque pour les questions c) ; d) Merci d'avance de votre aide.

Sagot :

E(x) = 16/n² + (n-1)²/n² - 10(n-1)/n² = [(n-1)² - 10(n-1) + 16]/n²

l'espérance mathématique passe par un minimum pur n-1 = 5 ou n = 6

est-ce la réponse?

pas certain.

c'est trout ce que je peux faire.

j'espère t'avoir aidé.