Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Voilà j'ai un DM de maths mais je bloque sur un exercice ... L'énoncé est le suivant: "n est un entier supérieur ou égal à 4. Dans une urne, on place n jetons : un rouge et tous les autres blancs. On tire successivement, au hasard et avec remise, deux jetons de l'urne. On gagne 16 points si on tire deux fois le jeton rouge, 1 point si on tire deux fois un jeton blanc et on perd 5 points dans les autres cas. X est la variable aléatoire égale au gain algébrique du joueur : X prend 16; 1 et -5"

a)  Représenter cette expérience aléatoire à l'aide d'un arbre pondéré.

J'ai réussi facilement

 b) Déterminer la loi de probabilité de la variable aléatoire X.

Ici j'ai trouvé pour 16 on a (1/n)^2

  1 on a (n-1/n)^2

 5 on a ((1/n)*(n-1/n))+((1/n)*(n-1/n))

c) Exprimer en fonction de n l’espérance de X.

 d) Existe-t-il des valeur de n pour lesquelles le jeu est équitable ?

 Je bloque pour les questions c) ; d) Merci d'avance de votre aide.



Sagot :

E(x) = 16/n² + (n-1)²/n² - 10(n-1)/n² = [(n-1)² - 10(n-1) + 16]/n²

l'espérance mathématique passe par un minimum pur n-1 = 5 ou n = 6

est-ce la réponse?

pas certain.

c'est trout ce que je peux faire.

j'espère t'avoir aidé.

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.