Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

ABC est un triangle rectangle en A avec AB=4 cm et AC=3cm. M est un point du segment [BC]. P est le point du segment [AC] tels que le quadrilatère APMQ est un rectangle. On note x la longueur BP, en centimètres. 1) Démontrer que: PM=(3/4)x. 2)Montrer que le périmètre P du rectangle APMQ est : P=8-(x/2) 3)Expliquer pourquoi le nombre x doit être compris entre 0 et 4. 4)Est-il possible que le périmètre du rectangle APMQ soit égal à : a) 7cm? b) 4cm? c) 10cm?. 5)Faire la figure en vraie grandeur dans le cas où le périmètre du rectangle est 7cm.

 

Veuillez répondre le plus tôt possible SVP!!



Sagot :

ABC est un triangle rectangle en A avec AB=4 cm et AC=3cm.

M est un point du segment [BC]. P est le point du segment [AB] et Q est le point du segment [AC] tels que le quadrilatère APMQ est un rectangle.

On note x la longueur BP, en centimètres.

 

1) Démontrer que: PM=(3/4)x.

d'apres le th de Thales : BP/BA=PM/AC

donc PM/3=x/4

donc PM=3/4*x

 

2) Montrer que le périmètre P du rectangle APMQ est : P=8-(x/2)

p=périmètre (APMQ)

  =2*(PM+PA)

  =2*(3/4*x+4-x)

  =2*(4-1/4*x)

  =8-x/2

 

3) Expliquer pourquoi le nombre x doit être compris entre 0 et 4.

P ∈ [AB]

or AB=4 cm

donc 0<x<4

 

4) Est-il possible que le périmètre du rectangle APMQ soit égal à :

a) 7cm?

OUI car p=7

donc 8-x/2=7

donc -x/2=-1

donc x=2

 

b) 4cm?

NON car p=4

donc 8-x/2=4

donc -x/2=-4

donc x=8 >4

 

c) 10cm

NON car p=10

donc 8-x/2=10

donc -x/2=2

donc x=-4 <0

 

5)Faire la figure en vraie grandeur dans le cas où le périmètre du rectangle est 7cm.

figure laissée au lecteur..........

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.