Sagot :
on à étudié les relevés des hauteurs maximales annuelles de ses crues,
Le 99eme centille des hauteurs d'eau mesurées est égal à 6,50m.
On en déduit que la probabilité que ces rues dépassent cette hauteur est égale à 0,01
On modélise la situation en considérant que la variable aléatoire X égale au nombre de hauteurs dépassant 6,50m suit une loi binomiale B (225;0,01).
1. Calculer, à l'aide de la calculatrice :
a. P(X=0) =0,104
b. P(X=1)=0,234
c. P(X=2)=0,268
2. Calculer les probabiltés P(X≥2) et P(X≥3)P(X≥2)=1-P(X=0)-P(X=1)=0,662
P(X≥3)=1-P(X=0)-P(X=1)-P(X=2)=0,394
3. Quelle est l'ésperance du nombre de dépassements ?
E(X)=225*0,01=2,25
4. Sur la période donnée, on a relevé deux dépassemnts.
Ces observations sont-elles en accord avec les résultats trouvés en modélisant la situation par la loi binomiale ?
l'écart-type est : s=√(225*0,01*099)=1,49
l'intervalle de confiance à 70% est :[2,25-1,49;2,25+1,49]
soit encore [0,76;3,74]
2 ∈ [0,76;3,74] donc les observations sont en accord avec les résultats trouvés au seuil de fiabilité de 70%