Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Démontrez que pour tout entier [tex]n \geq 1[/tex] :

[tex] cos^{(n)}(x) = cos(x+n \frac{\pi}{2})[/tex]

où cos(n) désigne la dérivée nième de la fonction cosinus.



Sagot :

Par récurence, pour n=0 c'est évident.

 

On par de [tex]\cos^{(n+1)}(x)=(\cos^{(n)}(x) )^{\prime} = \cos(x+n {\pi \over 2})^\prime= -\sin(x+n {\pi \over 2})=\cos(x+n {\pi \over 2})+{\pi \over 2})[/tex]

 

-> trop dur le tex. Bref c'est un récurence avec une proprieté de trigo -sin(x)=cos(x+pi/2)

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.