Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

bonjour pouvez vous m'aidez car j'ai du mal??? Pour tout réel x différent de 0 et de -1, on définit la fonction f par f(x)=1/(x+1)x 1) vérifier que pour tout réel x différent de 0 et de -1: f(x)=1/x-1/x+1 2) u est la suite définie pour tout entier naturel n plus grand ou egal à 1 par un=f(n) Detreminer la limite de la suite u lorsque n tend vers +l'infini 3) On pose pour tout entier naturel n plus grand ou egal à 1, Sn=u1+u2+....+un a)montrer que Sn=n/n+1 b)monrerque la suite (Sn) converge vers 1. merci!!!!



Sagot :

On part de  1/x -1/(x+1) [ attention aux parenthèses c'est comme la ponctuation  si on l'enleve ça change le sens] que l'on met au même dénominateur

 

 1/x-1/(x+1)= (x+1-x)/((x+1)x)=1/((x+1)x) La limite quand n tend vers + inf est  0

 

C'est ce que l'on appelle un somme telescopique : les termes ce simplifie de l'un a l'autre comme des dominos.On trouve Sn=-1/(n+1)+1= ((n+1)-1)/(n+1)=n/(n+1) ---> 1

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.