Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Bonjour ! Michel, joueur de rugby, est amené à "transformer" un essai, c'est à dire à envoyer le ballon au dessus de la barre située entre les 2 poteaux du but. Cette barre est située à 3m du sol et le joueur se trouve ay milieu du terrain, à 20m de la ligne de but. On modélise par un point O l'endroit où le joueur frappe le ballon.

On définit un repère orthonormé (O,I,J) I=abscisse

La trajectoire du ballon est modélisée par la courbe d'une fonction f qui est définie sur [0;25] par f(x)=x-x^2/25

3) Démontrer que f(x)≤6,25 pour tout réel x∈[0;25] En déduire que la fonction f admet un maximum que l'on précisera.

4) Dresser le tableau de variation de la fonction f sur [0;25]

5) Résoudre l'équation f(x)=0 et en déduire à quelle distance du joueur retombe le ballon.

S'il vous plait aidez-moi. Merci



Sagot :

f(x)=x(1-x/25) =(1/25)(-x²+25x)=(1/25)(-(x-25/2)²+625/4)=(25/4)-(1/25)(x-25/2)²

elle est donc maximale en x=12.5, valeur 6.25

elle croit de 0 à 12.5 et décroit ensuite

 

f(x)=0 <=> x(1-x/25)=0 <=> x=0 ou x=25  le ballon retombe à 25m du départ

 

f(20)=20(1/5)=4 dit sue le ballon sera assez haut pour passer 

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.