Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

Démontrer par recurrence que pour tout entier naturel n ≥ 1 : 1ᵌ + 2ᵌ +…+ nᵌ =(n²(n+1)²)/4



Sagot :

n²(n+1)²/4+(n+1)³=(n+1)²[ n²/4+n+1]=(n+1)^2[n²+4n+4]/4=(n+1)^2(n+2)^2/4

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.